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ABSTRACT

This paper proposes a bi-level tensor decomposition (BLTD),
properly exploiting the characterization advantages of tensor
subspace representation (TSR) and tensor ring decomposition
(TRD). More specifically, the first level is related to the de-
composition of a third-order tensor into its TSR using the
tensor-tensor product (t-product), and the second level per-
forms TRD on the coefficient tensor obtained by TSR. Lever-
aging the proposed BLTD, we design a bi-level tensor nuclear
norm (BLTNN)-based model for hyperspectral images (HSIs)
denoising. To solve the model, we develop an efficient alter-
nating direction method of multipliers (ADMM)-based algo-
rithm. Experimental results demonstrate the superior perfor-
mance of our method compared to existing methods.

Index Terms— Hyperspectral image restoration, bi-level
tensor decomposition, low-rankness

1. INTRODUCTION

Hyperspectral images (HSIs) contain abundant spatial-spectral
information and are valuable in many applications [1]. How-
ever, because of the complex observation environments and
limitations in imaging systems, HSIs are frequently corrupted
by different types of noise, such as Gaussian noise, salt-and-
pepper noise, and stripes. These noises affect the quality
of HSIs and also the accuracy of downstream applications.
Therefore, HSI denoising is crucial for ensuring the effective-
ness of subsequent applications.

Many HSI denoising methods rely on the low-rank prior
because of its ability to preserve the global structure of the
data, leading to promising performance. Regarding the low-
rank matrix-based restoration methods, Zhang et al. proposed
a classical low-rank matrix recovery (LRMR)-based model
for HSI denoising [2]. Considering that the noise intensity
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Fig. 1. BLTD-based method for HSI denoising.

in different bands is different, He et al. developed a patch-
wise low-rank matrix approximation (LRMA)-based method
to effectively remove the mixed noise [3]. Nevertheless, the
majority of matrix-based methods unfold the HSI cube into
a matrix, resulting in the loss of intrinsic information within
the cube. Hence, numerous low-rank tensor-based restora-
tion methods have been proposed. Renard et al. introduced
a HSI denoising model using low-rank tensor approximation
(LRTA) based on Tucker decomposition [4]. Fan et al. devel-
oped a model for HSI denoising based on low-tubal-rank ten-
sor recovery (LRTR), where tubal-rank is defined from tensor
singular value decomposition (t-SVD) [5]. By generalizing
the t-SVD to mode-k t-SVD, Zheng et al. proposed tensor
fibered-rank and its convex relaxation, i.e., three-directional
tensor nuclear norm (3DTNN), for HSI denoising [6].

In the framework of (mode-k) t-SVD, low-tubal-rank
decomposition and low-fibered-rank decomposition indicate
that the HSI has low-rank tensor subspace representation
(TSR) along the third-mode and all three modes, respectively.
However, they only exploit a single-level low-rankness of the
data and ignore the underlying low-rankness of the coefficient
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tensor obtained by the TSR, as shown in Fig. 1. Therefore, we
propose a bi-level tensor decomposition to more accurately
characterize the bi-level low-rank structure of the data.

The contribution of this paper is three-fold: i) a novel bi-
level tensor decomposition (BLTD), by combining TSR and
tensor ring decomposition (TRD) (as in Fig. 1), is proposed;
ii) to efficiently remove the mixed noise, we propose a bi-
level tensor nuclear norm (BLTNN) by employing the tensor
ring nuclear norm (TRNN) as convex relaxation of TRD-rank
and develop a BLTNN-based model for HSI denoising; iii)
we introduce an alternating direction method of multipliers
(ADMM)-based algorithm [7] to solve the proposed model.

Remark 1 As shown in [6], the mode-1 and mode-2 fibered-
ranks are much smaller than the mode-3 fibered-rank, thus we
utilize the TSR along mode-2 in this paper.

2. PRELIMINARIES

In this section, we mainly introduce the relevant definitions of
TSR, TRD [8], and TRNN [9] for subsequent discussion.

For X ∈ Rn1×n2×n3 , we use xijk and X(i) ∈ Rn1×n3 to
denote its (i, j, k)-th element and i-th mode-2/lateral slice, re-
spectively. The `1 norm and Frobenius norm of X are defined
as ‖X‖1 := (

∑
ijk |xijk|) and ‖X‖F := (

∑
ijk x

2
ijk)1/2,

respectively. The inner product of X and Y is defined as
〈X ,Y〉 :=

∑
ijk xijkyijk.

Definition 1 (mode-2 t-product) The mode-2 t-product be-
tween X ∈ Rn1×n2×n3 and Y ∈ Rn3×n2×n4 is defined as

Z = X ∗2 Y ⇔ Z(i, :, k) =
∑n3

j=1
X (i, :, j) ? Y(j, :, k),

where Z ∈ Rn1×n2×n4 and ? denotes circular convolution.

Definition 2 (mode-2 conjugate transpose) The mode-2
conjugate transpose of X , denoted by XH2 , is obtained
by conjugate transposing each of the mode-2 slices and then
reversing the order of transposed mode-2 slices from 2 to n2.

Definition 3 (mode-2 TSR) The mode-2 TSR of tensor X ∈
Rn1×n2×n3 is defined as

X = U ∗2 A, s.t. UH2 ∗2 U = I2, (1)

where U ∈ Rn1×n2×r is a semi-orthogonal basic tensor, A ∈
Rr×n2×n3 is the coefficient tensor, and I2 is the mode-2 iden-
tity tensor where its first mode-2 slice is an identity matrix
and the other mode-2 slices are all zeros.

Definition 4 (TRD) TRD decomposes tensorX ∈ Rn1×n2×n3

into a circular multi-linear product over three third-order
factor tensors G1 ∈ Rr0×n1×r1 , G2 ∈ Rr1×n2×r2 , and
G3 ∈ Rr2×n3×r0 . The element-wise form of TRD can be
formulated as

X (i1, i2, i3) = Tr(G1(i1)G2(i2)G3(i3)), (2)

where Gk(ik) denotes the ik-th lateral slice of Gk, Tr(·) de-
notes the matrix trace, and vector (r0, r1, r2) is called TRD-
rank. TRD can be simply written as X = Φ(G1,G2,G3).

According to the connection of the rank of tensor circular
unfolding matrices and the TRD-rank, TRNN is established
using a series of tensor circular unfolding matrices.

Definition 5 (TRNN) Assume tensor X ∈ Rn1×n2×n3 with
TRD, its TRNN is defined as∑3

k=1
αk‖X<k,d>‖∗, (3)

where αk ≥ 0 (k = 1, 2, 3) with
∑3
k=1 αk = 1, ‖ · ‖∗

denotes the matrix nuclear norm, d = 1, X<k,d> is the
circular unfolding matrix of X satisfying X<k,d>(itit+1

· · · ik, ik+1 · · · it−1) = X (i1, i2, i3) with

t =

{
k − d+ 1, k ≥ d;

k − d+ 1 + 3, otherwise,
(4)

and the corresponding inverse operation is defined as X =
foldk(X<k,d>).

3. THE PROPOSED BLTD AND BLTNN

Based on the previous discussion, in this section, we define
BLTD and BLTNN.

Firstly, HSIs exhibit significant redundancy in the spec-
tral direction. Thus, we employ TSR to characterize the low-
rankness of HSIs in the first level. Secondly, the coefficient
tensor in the TSR is also low-rank, as depicted in Fig. 1 where
the unfolding matrix along each mode of the coefficient tensor
is low-rank. This implies that HSIs have a second-level low-
rank structure. To characterize this low-rankness, we employ
the TRD. Naturally, the proposed BLTD form is as follows:

Definition 6 (BLTD) BLTD factorizes tensorX ∈ Rn1×n2×n3

into a semi-orthogonal tensor U ∈ Rn1×n2×r, followed
by a circular multi-linear product over three third-order
factor tensors G1 ∈ Rr0×r×r1 , G2 ∈ Rr1×n2×r2 , and
G3 ∈ Rr2×n3×r0 , i.e.,

X = U ∗2 Φ(G1,G2,G3) s.t. UH2 ∗2 U = I2, (5)

where vector (r, r0, r1, r2) is referred to as the BLTD-rank.

Moreover, we can obtain the convex relaxation of BLTD-
rank by substituting the TRD with the TRNN.

Definition 7 (BLTNN) Assume tensor X ∈ Rn1×n2×n3 with
BLTD-form, its BLTNN is defined by∑3

k=1
αk‖A<k,d>‖∗, (6)

where A satisfies X = U ∗2 A and UH2 ∗2 U = I2, A<k,d>
is the circular unfolding matrix of A.
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Algorithm 1 ADMM-based algorithm for the proposed HSI restoration model.
Input: The noisy HSI Y , parameters λ1, λ2, r, α = (α1, α2, α3), β = (β1, β2, β3), µ, γ, and ρ = 1.2.
Initialization: t = 0, X = Y ,N = 0, S = 0, P = 0,Q = 0, Zk = 0 (k = 1, 2, 3), U andA are obtained by mode-2 truncated

t-SVD of Y .
1: while not converged do
2: Update (Mk)t+1 = foldk

[
Dαk/βk

(
At<k,d> + 1

βk
(Zk)t<k,d>

)]
, where Dτ (·) denotes the thresholding SVD operation.

3: Update X t+1 = (µ(U t ∗2 At)− Pt + γ(Y −N t − St) +Qt) /(µ+ γ).
4: Update N t+1 = (γ(Y − X t+1 − St) +Qt)/(2λ1 + γ).
5: Update St+1 = soft(Y − X t+1 −N t+1 + Qt

γ ,
λ2

γ ), where soft(X , ξ)ijs = sgn(xijs)max(|xijs| − ξ, 0).

6: Update U t+1 = V̂t+1 ∗2 (Û t+1)H2 , where Û and V̂ are from the t-SVD of At ∗2 (X t+1 + Pt

µ )H2 = Û t+1 ∗2 D̂t+1 ∗2
(V̂t+1)H2 .

7: Update At+1 = (
∑3
k=1

(
βk(Mk)t+1 − (Zk)t) + (U t+1)H2 ∗2 (µX t+1 + Pt)

)
/(
∑3
k=1 βk + µ).

8: Update Pt+1 = Pt + µ(X t+1 − U t+1 ∗2 At+1); Qt+1 = Qt + γ(Y − X t+1 −N t+1 − St+1); (Zk)t+1 = (Zk)t +
βk(At+1 − (Mk)t+1), k = 1, 2, 3.

9: Let β = ρβ, µ = ρµ, γ = ργ.
10: Check the convergence criterion:‖X t+1 −X t‖F /‖X t‖F < 10−4.
11: end while
Output: The recovered HSI X .

4. THE PROPOSED DENOISING METHOD

Suppose the noise is independent additive noise, the proposed
HSI denoising model based on BLTNN is formulated as

min
X ,N ,S

∑3

k=1
αk‖A<k,d>‖∗ + λ1‖N‖2F + λ2‖S‖1,

s.t. Y = X +N + S, X = U ∗2 A, UH2 ∗2 U = I2,
(7)

where tensors Y and X denote the noisy and clean HSIs re-
spectively,N and S denote the Gaussian and the sparse noises
(including salt-and-pepper noise and stripes), respectively.

We employ the ADMM framework to solve (7). By intro-
ducing auxiliary variables Mk (k = 1, 2, 3), we rewrite (7)
as

min
X ,N ,S

∑3

k=1
αk‖Mk

<k,d>‖∗ + λ1‖N‖2F + λ2‖S‖1,

s.t. Y = X +N + S, A =Mk, k = 1, 2, 3

X = U ∗2 A, UH2 ∗2 U = I2.

(8)

The augmented Lagrangian function of (8) is

L(Mk,X ,N ,S,U ,A,P,Q,Zk) =
∑3

k=1
{αk‖Mk

<k,d>‖∗

+ 〈A −Mk,Zk〉+
βk
2
‖A −Mk‖2F }+ λ1‖N‖2F

+ λ2‖S‖1 + 〈X − U ∗2 A,P〉+
µ

2
‖X − U ∗2 A‖2F

+ 〈Y − X −N − S,Q〉+
γ

2
‖Y − X −N − S‖2F ,

where Zk (k = 1, 2, 3), P , and Q are the Lagrange multi-
pliers; βk (k = 1, 2, 3), µ, and γ are the penalty parame-
ters. Within the framework of ADMM, Mk, X , N , S, U ,

and A are alternately updated as summarized in Algorithm 1.
Moreover, the computational complexity of the proposed al-
gorithm isO

(
rn2n3(r+n1+n2+n3)+n2log(n2)(n1r+n3r

+n1n3)
)
.

5. EXPERIMENTS

To verify the effectiveness of the proposed BLTNN-based
restoration method, we conduct experiments on a sub-image
cropped from Washington DC Mall (WDC) dataset with size
256 × 256 × 191. For comprehensive evaluation, four rep-
resentative denoising methods are selected, including LRMR
[2], LRTR [5], NGmeet [10], and 3DTNN [6]. We choose the
peak signal to noise ratio (PSNR ↑), the structural similarity
(SSIM ↑), and the spectral angle mapping (SAM ↓) as quality
metrics. The noisy data are simulated as follows:

Cases 1-2: Zero-mean Gaussian noise is added to all
bands, where the standard deviation of the noise is randomly
selected from [0.05, 0.15] and [0.1, 0.2], respectively.

Cases 3-4: Based on Cases 1-2, salt-and-pepper noise is
added to each band, where the percentage of the noise is ran-
domly selected from [0.1, 0.3].

Case 5: Based on Case 4, 10 bands are randomly selected
to add stripes and the percentage of stripes is 5% in each band.

Table 1 presents the PSNR, SSIM, SAM, and average run-
ning time for the restoration of the WDC dataset using vari-
ous methods. It is evident that the proposed BLTNN-based
denoising method outperforms the compared methods for all
metrics and requires less computational time. Visual repre-
sentations of the recovered results are shown in Fig. 2. From
Fig. 2, it is clear that our method effectively eliminates mixed
noise while preserving the underlying structure. LRTR and
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Table 1. The quantitative assessment of different methods on the WDC dataset. Best results are in boldface.

Case
Noisy image LRMR LRTR NGmeet 3DTNN BLTNN

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Case 1 20.18 0.414 32.13 34.82 0.937 6.521 32.66 0.917 8.319 36.39 0.956 5.181 35.79 0.965 3.865 37.05 0.971 3.769

Case 2 16.67 0.267 40.85 32.34 0.900 8.441 29.94 0.873 9.728 34.09 0.938 5.332 33.33 0.946 4.928 34.59 0.958 4.839

Case 3 11.07 0.112 49.15 31.03 0.894 9.073 29.79 0.863 9.870 23.02 0.805 12.16 32.90 0.930 5.915 34.68 0.942 5.346

Case 4 10.27 0.089 51.23 29.26 0.856 10.71 27.99 0.829 11.56 22.90 0.797 11.92 29.75 0.865 8.334 31.94 0.902 7.183

Case 5 10.29 0.091 51.37 29.20 0.855 10.79 27.82 0.825 11.55 23.13 0.805 12.16 29.58 0.883 7.678 31.82 0.899 7.227

Average time(s) – 185.1 40.8 42.7 179.9 28.3

Clean image Noisy image LRMR [2] LRTR [5] NGmeet [10] 3DTNN [6] Proposed BLTNN

Fig. 2. Restoration results by different methods of the 67-th band of WDC dataset under Case 5.

3DTNN struggle to adequately remove mixed noise, while
LRMR and NGmeet face challenges in accurately restoring
local details.

6. CONCLUSION

This paper suggested a novel BLTD to comprehensively char-
acterize the low-rank structure of HSIs. Based on BLTD, we
developed a BLTNN-based model for HSI denoising. Fur-
thermore, we presented an efficient ADMM-based algorithm
to address this model. Experimental results demonstrated the
superiority of the proposed method both quantitatively and
qualitatively.
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