
Learnable Transform-Assisted Tensor Decomposition for
Spatio-Irregular Multidimensional Data Recovery

HAO ZHANG, TING-ZHU HUANG, and XI-LE ZHAO, School of Mathematical Sciences,
University of Electronic Science and Technology of China, Chengdu, China
SHUQIN ZHANG, School of Mathematical Sciences, Fudan University, Shanghai, China
JIN-YU XIE, School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu, China
TAI-XIANG JIANG, School of Computing and Artificial Intelligence, Southwestern University of Finance
and Economics, Chengdu, China
MICHAEL K. NG, Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong

Tensor decompositions have been successfully applied to multidimensional data recovery. However, classical
tensor decompositions are not suitable for emerging spatio-irregular multidimensional data (i.e., spatio-
irregular tensor), whose spatial domain is non-rectangular, e.g., spatial transcriptomics data from bioinformatics
and semantic units from computer vision. By using preprocessing (e.g., zero-padding or element-wise 0-1
weighting), the spatio-irregular tensor can be converted to a spatio-regular tensor and then classical tensor
decompositions can be applied, but this strategy inevitably introduces bias information, leading to artifacts.
How to design a tensor-based method suitable for emerging spatio-irregular tensors is an imperative challenge.
To address this challenge, we propose a learnable transform-assisted tensor singular value decomposition
(LTA-TSVD) for spatio-irregular tensor recovery, which allows us to leverage the intrinsic structure behind
the spatio-irregular tensor. Specifically, we design a learnable transform to project the original spatio-irregular
tensor into its latent spatio-regular tensor, and then the latent low-rank structure is captured by classical
TSVD on the resulting regular tensor. Empowered by LTA-TSVD, we develop spatio-irregular low-rank tensor
completion (SIR-LRTC) and spatio-irregular tensor robust principal component analysis (SIR-TRPCA) models
for the spatio-irregular tensor imputation and denoising respectively, and we design corresponding solving
algorithms with theoretical convergence. Extensive experiments including the spatial transcriptomics data
imputation and hyperspectral image denoising show SIR-LRTC and SIR-TRPCA are superior performance to
competing approaches and benefit downstream applications.
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1 Introduction
With the development of information technology, real-world data is usually more than two dimen-
sions [6, 8, 28, 39]. However, multidimensional data often suffers from corruption (e.g., elements
missing and noise) in acquisition and transmission [7, 20, 38], which hinders the subsequent applica-
tion, such as object recognition [23], classification [44, 45], and segmentation [50]. Thus, recovering
multidimensional data enhances the quality of the observed data and enables the recovered results
to help subsequent applications [43, 53].

Real-world multidimensional data can be mathematically represented by a tensor [11, 16, 17, 33,
35]. In this article, we focus on three-way tensors. The standard three-way tensor can be considered
to consist of several rectangular frontal slices of the same size, i.e., the standard three-way tensor is a
spatio-regular tensor. For instance, Figure 1 provides two real-world examples of the spatio-regular
tensor. Due to the powerful representation ability, tensor-based methods have recently received
increasing attention in the field of multidimensional data recovery.

The principal idea behind tensor-based multidimensional data recovery is to exploit the low-
rankness of the multidimensional data. Two classical low-rank tensor-based models are low-rank
tensor completion (LRTC) and tensor robust principal component analysis (TRPCA),
which can be employed for missing elements imputation and sparse noise removal, respectively.
Considering the observed three-way tensor Y ∈ R=1×=2×=3 , the LRTC and TRPCA models can be
mathematically formulated as

min
X

rankt (X ), s.t. YΩ = XΩ, (1)

and

min
X

rankt (X ), s.t. Y = X + S, (2)

where rankt (·) is the low-rank tensor regularizer, X ∈ R=1×=2×=3 is the recovered tensor, the
constraint YΩ = XΩ enforces the entries of X in index Ω equal to the corresponding entries of the
observation Y in the LRTC model, and S is the sparse component in the TRPCA model.

How to design the low-rank tensor regularizer of Equations (1) and (2) has a considerable effect on
themultidimensional data recovery performance. Different from thematrix rank, definition of tensor
rank relies on different tensor decompositions. CANDECOMP/PARAFAC (CP) decomposition
decomposes a tensor as sum of the rank-one tensors [15]. CP rank is defined as the minimal number
of the sum of the rank-one tensors [15]. Unfortunately, directly minimizing CP rank of a tensor is
usually NP-hard [14]. Tucker decomposition decomposes a tensor into a core tensor multiplied by
matrices along each mode [36], which introduces the multilinear rank. The multilinear rank is a
vector, which consists of the ranks of each mode’s unfolding matrix [36]. Many multidimensional
data recovery methods were also inspired by the multilinear rank minimization like HaLRTC [24]

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 1, Article 12. Publication date: December 2024.

https://doi.org/10.1145/3701235


LTA Tensor Decomposition for Spatio-Irregular Multidimensional Data Recovery 12:3

oedivyarG)b(egamilartcepsitluM)a(

Fig. 1. Real-world examples of the spatio-regular tensor. (a) The multispectral image is a three-way tensor with
the rectangular spatial domain, where mode 3-fibers are the same length. (b) The gray video is a three-way
tensor with the rectangular spatial domain, where mode 3-fibers are the same length.

and TMac [40]. To tackle the curse of dimensionality of Tucker decomposition, tensor network
decompositions were developed, like tensor train (TT) decomposition and tensor ring (TR)
decomposition [4, 9, 10, 32, 51]. TT and TR decompositions are more effective in capturing the
low-rank structure of multidimensional data with more than three modes, where the tensor is
decomposed into several factors like three-way tensors or matrices. Bengua et al. [4] proposed two
surrogates of TT rank for color video recovery. Yu et al. [42] considered the TR nuclear norm for
visual data imputation. Additionally, Zheng et al. [52] exploited the connection of each factor of the
tensor network decomposition and developed the fully connected tensor network decomposition
for LRTC.

Attributed to beautiful algebraic properties, the tensor singular value decomposition (TSVD)
has received increasing attention in three-way tensor recovery. TSVD introduces the tubal rank
[19, 21, 37, 47], which is defined as the number of non-zero mode-3 fibers of the 5 -diagonal tensor
from the TSVD operator. As a convex surrogate of the tubal rank, tensor nuclear norm (TNN)
has successfully been applied to multidimensional data recovery. Zhang et al. [49] and Lu et al.
[26] proposed TNN-based LRTC and TRPCA models, respectively. Different from other tensor
decomposition-based regularizers, TNN can be seen as a transform-based low-rank regularizer
because TNN exploits the low-rankness of the frontal slice of the tensor under a predefined discrete
Fourier transform (DFT) along the third mode [21]. Lu et al. [27] and Jiang et al. [18] introduced
the discrete Cosine transform (DCT) and framelet transform into the TSVD framework for
LRTC, respectively.

Moreover, PARAFAC2 decomposition [13] is developed for the three-way tensor, whose frontal
slices are rectangles of different sizes, e.g., amino acid data [12] and electronic health records [1].
In summary, these classical tensor decompositions are suitable for the spatio-regular tensor, whose
spatial domain is rectangular.

Spatio-Irregular Multidimensional Data: Due to technological advancements, spatio-irregular mul-
tidimensional data (i.e., spatio-irregular tensor) has been emerging, such as spatial transcriptomics
data from bioinformatics and semantic units from computer vision. The spatio-irregular tensor is a
tensor with the non-rectangular spatial domain, where mode 3-fibers are the same length. Figure 2
shows two real-world spatio-irregular tensors: (a) Spatial transcriptomics data of the organ is a
typical spatio-irregular tensor, whose spatial domain is defined by the shape of the organ slice [2];
(b) Semantic units from superpixels segmentation algorithm are spatio-irregular tensors, where each
semantic unit (i.e., superpixel) is a tensor with the non-rectangular spatial domain [46]. However,
previous tensor-based methods were mainly developed for classical spatio-regular tensors, which
cannot be directly applied to spatio-irregular tensors (see sub-figure (c) of Figure 3 as an example).
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Fig. 2. Real-world examples of spatio-irregular tensors. (a) The spatial transcriptomics data of the human
heart visualized in 2D. (b) Semantic units (i.e., superpixels) from superpixels segmentation algorithm on MSI
Pompoms.

PSNR: Inf PSNR: 14.88 PSNR: — PSNR: 17.61 PSNR: 24.23 PSNR: 25.44

(a) Original (b) Observed (c) TNN (direct) (d) TNN-Z (e) TNN-I (f) Ours

Fig. 3. An experimental example of superpixel denoising. This superpixel is from the color image Butterfly and
corrupted by salt and pepper noise with the ratio = 0.3. Here, TNN cannot be directly applied to the original
spatio-irregular tensor (see sub-figure (c)). By using zero-padding or interpolation, TNN can be applied to the
resulting spatio-regular tensor (see sub-figures (d) and (e)). Our method is suitable for the spatio-irregular
tensor while TNN-Z and TNN-I introduce artifacts (see sub-figures (d), (e), and (f)).

By using preprocessing (e.g., zero-padding [12] or interpolation [41]), we can convert the
spatio-irregular tensor to a regular tensor and then apply classical tensor-based methods (e.g.,
TNN). However, this strategy inevitably introduces bias information, leading to artifacts (see
sub-figures (d) and (e) of Figure 3). In summary, classical tensor-based methods are not suitable
for spatio-irregular tensors, hindering the spatio-irregular tensor processing and analysis. How
to design a tensor-based method suitable for emerging spatio-irregular tensors is an imperative
challenge.

To address this challenge, we develop a fundamental tensor decomposition for emerging spatio-
irregular tensors. Specifically, the spatio-irregular tensor can be lifted to a latent regular tensor,
which usually exhibits a low-rank structure. From Figure 4, we can observe that the singular values’
energy of the latent regular tensor is significantly concentrated, which indicates the latent regular
tensor exhibits significant low-rankness. Motivated by this observation, we propose a learnable
transform-assisted tensor singular value decomposition (LTA-TSVD) for spatio-irregular
tensor recovery. Figure 5 provides the flowchart of the proposed method. In LTA-TSVD, we design
a learnable transform to project the original spatio-irregular tensor into its latent spatio-regular
tensor, and then the latent low-rank structure is captured by classical TSVD on the resulting regular
tensor. In this process, the proposed method uses the learnable spatial transform to project the
original spatio-irregular tensor into a latent regular tensor while preserving the essential low-
rankness of the spatio-irregular tensor without introducing extra bias information. We further
compare the low-rankness of the spatio-irregular tensor with preprocessing (e.g., zero-padding and
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Fig. 4. The accumulation energy ratio of singular values (AccEgy) curves of the spatio-irregular tensor with
zero-padding, the spatio-irregular tensor with interpolation, and the latent regular tensor by our method for
diverse spatio-irregular multidimensional data. Here, AccEgy = (∑=3

:=1

∑A
8=1 f

:
8
)/(∑=3

:=1

∑Amax
8

f:
8
), where f:

8

is the 8th singular value of the :th frontal slice under the TSVD framework, A is the first A singular values of
the :th slice, and Amax is the total numbers of singular values of the :th slice.

Fig. 5. The flowchart of the proposed method. This is an example of superpixel denoising. Here, Y is the
observed spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers, X is the denoised tensor, ^ (3) ∈
R=3×; is the mode-3matricization of X , J ∈ R;×=̄1=̄2 is the learnable transform, reshape re-arrays (^ (3)J) as
the latent spatio-regular tensor of size =̄1 × =̄2 × =3, S is the sparse noise, ‖ · ‖1 is ;1 norm, ‖ · ‖� is Frobenius
norm, ‖ · ‖TNN is tensor nuclear norm, and _ is the parameter to balance regularizers.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 1, Article 12. Publication date: December 2024.



12:6 H. Zhang et al.

Table 1. Basic Definitions

Notations Explanation

G, x,^ ,X scalar, vector, matrix, tensor

X8 9: , X (8, 9, :) the {8, 9, :}-th element of the three-way tensor X
X (:, :, :), X (: ) the :-th frontal slice of the three-way tensor X

^ (:, 9) the 9-th column of the matrix ^

‖X ‖� Frobenius norm: ‖X ‖� =
√∑

8

∑
9

∑
: X 2

8 9:

‖X ‖1 ;1 norm: ‖X ‖1 =
∑

8

∑
9

∑
: |X8 9: |

f 9 (^ ) the 9-th singular value of ^

^ (: ) mode-: matricization of X
vec(^ ) vectorization of ^

^> transpose of ^

^−1 inverse of ^

O= identity matrix with size = × =

interpolation) and the latent regular tensor by our method in Figure 4. We can observe that the
singular values’ energy of the latent regular tensor by our method is significantly more concentrated
than that of the spatio-irregular tensor with preprocessing, which indicates our method can better
exploit the essential low-rankness of the spatio-irregular tensor as compared with traditional
tensor-based methods with preprocessing. The experimental results in Figure 3 also show that
the traditional tensor-based method with the preprocessing (e.g., TNN with zero-padding and
interpolation) inevitably introduces bias information, leading to significant artifacts (see sub-figures
(d) and (e) of Figure 3). Compared with the traditional tensor-based method with the preprocessing,
our method better exploits the essential low-rankness without introducing extra bias information,
thus avoiding artifacts (see sub-figure (f) of Figure 3).

Our contributions are summarized as the following two folds:
(a) We propose an LTA-TSVD for spatio-irregular multidimensional data recovery, which allows

us to leverage the intrinsic structure behind the spatio-irregular multidimensional data. Empowered
by LTA-TSVD, we develop corresponding spatio-irregular low-rank tensor completion (SIR-
LRTC) and spatio-irregular tensor robust principal component analysis (SIR-TRPCA)
models for spatio-irregular multidimensional data imputation and denoising.

(b) We elaborately design proximal alternating minimization (PAM)-based algorithms for
solving the resulting models and establish the theoretical convergence. Extensive experiments
including the spatial transcriptomics data imputation and hyperspectral image (HSI) denois-
ing show the proposed method is superior performance to competing approaches and benefits
downstream applications.

2 Preliminaries
Some common symbols used in this article are provided in Table 1. In this article, we mainly
consider the three-way tensor.
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2.1 TSVD and TNN
Here, we introduce the TSVD briefly, which is a classical tensor decomposition to exploit the low-
rank structure of the spatio-regular three-way tensor. For X ∈ R=1×=2×=3 , its mode-3 matricization
^ (3) ∈ R=3×=1=2 can be calculated by the mode-3 unfolding operator, i.e.,

^ (3) = unfold3 (X ) =
(
vec(X (:, :, 1)), vec(X (:, :, 2)), . . . , vec(X (:, :, =3))

)>
, (3)

and the inverse operator of mode-3 unfolding is defined as fold3 (unfold3 (X )) = X .
Then, the mode-3 tensor-matrix product ×3 can be defined asX ×3_ = fold3 (_^ (3) ). X̄ is defined

as the tensor generated by DFT on each mode-3 fiber of X , i.e., X̄ = X ×3 L , where L is the DFT
matrix. X can also be computed via the inverse DFT, i.e., X = X̄ ×3 L −1. In particular, the transpose
of a tensor X ∈ R=1×=2×=3 is defined as X> ∈ R=2×=1×=3 by transposing each of the frontal slices
and then reversing the order of transposed frontal slices 2 through =3 [21]. I ∈ R=×=×=3 is the
identity tensor, whose first frontal slice is the = × = identity matrix and other frontal slices are all
zeros [21].

Definition 2.1 (Facewise Product [21]). The facewise product of X ∈ R=1×;×=3 and Y ∈ R;×=2×=3 is
Z = X4Y , where Z (:, :, :) = X (:, :, :)Y (:, :, :).

Definition 2.2 (Tensor-Tensor Product [21]). The tensor-tensor product (t-product) of X ∈ R=1×;×=3

and Y ∈ R;×=2×=3 is Z = X ∗ Y = and Z of size =1 × =2 × =3, where

Z = X ∗ Y = ((X ×3 L )4(Y ×3 L )) ×3 L
−1. (4)

Definition 2.3 (Orthogonal Tensor [21]). If O ∈ R=1×=2×=3 satisfies O> ∗ O = O ∗ O> = I , it is
orthogonal.

Definition 2.4 (TSVD [21]). The TSVD of X ∈ R=1×=2×=3 is formulated as

X = U ∗ S ∗ V>, (5)

where S ∈ R=1×=2×=3 is a 5 -diagonal tensor and U ∈ R=1×=1×=3 and V ∈ R=2×=2×=3 are orthogonal
tensors.

Definition 2.5 (TNN [21]). For X ∈ R=1×=2×=3 , its TNN can be computed via the summation of
the nuclear norm of frontal slices from X̄ = X ×3 L , i.e.,

‖X ‖TNN =
1
=3

=3∑
:=1

‖X̄ (:, :, :)‖∗ =
1
=3

=3∑
:=1

∑
9

f 9 (X̄ (:, :, :)) =
∑
9

S ( 9, 9, 1), (6)

where S is the 5 -diagonal tensor from TSVD of X .

3 Main Results
In this section, we will introduce the proposed LTA-TSVD, the resulting imputation (SIR-LRTC)
and denoising (SIR-TRPCA) models, and the corresponding solving algorithm for spatio-irregular
tensors.

We first provide basic definitions and operations for spatio-irregular tensors. The spatio-irregular
tensor is a tensor with the non-rectangular spatial domain, where mode 3-fibers are the same length
(see Figure 2 for real-world examples).

Definition 3.1 (Mode-3 Matricization of Spatio-Irregular Tensor ). For a spatio-irregular tensor X
with =3 frontal slices and ; mode-3 fibers, its mode-3 matricization can be defined as unfolding
mode-3 fibers of X as a matrix, i.e.,

^ (3) = ir-unfold3 (X ) =
(
X [1],X [2], . . . ,X [; ] ) , (7)
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where X [: ] is the :th mode-3 fiber of X (: = 1, 2, . . . , ;), ^ (3) ∈ R=3×; , and the inverse process of
the mode-3 matricization of spatio-irregular tensor X can be defined as X = ir-fold3 (^ (3) ).

3.1 LTA-TSVD for Spatio-Irregular Tensors
Now, we begin to define LTA-TSVD for spatio-irregular tensors, which allows us to leverage the
intrinsic structure behind the spatio-irregular tensor. In LTA-TSVD, we use a learnable transform
to project the original spatio-irregular tensor into its latent spatio-regular tensor, and then the
latent low-rank structure is captured by classical TSVD on the resulting regular tensor.

We first define the latent spatio-regular tensor with the help of the learnable transform.

Definition 3.2 (Latent Spatio-Regular Tensor ). For a spatio-irregular tensor X with =3 frontal
slices and ; mode-3 fibers, its latent spatio-regular tensor L ∈ R=̄1×=̄2×=3 is

L = reshape(^ (3)J), (8)

where J ∈ R;×=̄1=̄2 is the learnable transform, reshape re-arrays (^ (3)J) as the spatio-regular
tensor of size =̄1 × =̄2 × =3, R (3) = ^ (3)J , and ‖J (:, 9)‖2

�
= 1 ( 9 = 1, 2, · · · , =̄1=̄2).

Then, we define LTA-TSVD for spatio-irregular tensors as follows.

Definition 3.3 (LTA-TSVD). For a spatio-irregular tensor X with =3 frontal slices and ; mode-3
fibers, its LTA-TSVD is defined as

L = UL ∗ SL ∗ V>
L , (9)

where L ∈ R=̄1×=̄2×=3 is the latent spatio-regular tensor of X , SL ∈ R=̄1×=̄2×=3 is a 5 -diagonal tensor,
and UL ∈ R=̄1×=̄1×=3 and VL ∈ R=̄2×=̄2×=3 are orthogonal tensors.

Based on LTA-TSVD, we can define the LTA-TSVD-based tensor nuclear norm (LTA-TNN)
to leverage the intrinsic structure behind the spatio-irregular tensor.

Definition 3.4 (LTA-TNN ). For a spatio-irregular tensor X with =3 frontal slices and ; mode-3
fibers, its LTA-TNN is

‖X ‖LTA-TNN =‖reshape(^ (3)J)‖TNN =
∑
9

SL ( 9, 9, 1), (10)

where SL is the 5 -diagonal tensor from LTA-TSVD of the spatio-irregular tensor X .

3.2 The Proposed SIR-LRTC and SIR-TRPCA Models
Empowered by LTA-TSVD and LTA-TNN, we propose SIR-LRTC and SIR-TRPCA models for
spatio-irregular tensor imputation and denoising, respectively. Specifically, the imputation model
(SIR-LRTC) can be formulated as

min
X ,J

‖reshape(^ (3)J)‖TNN,

s.t. ‖J (:, 9)‖2� = 1, 9 = 1, 2, · · · , =̄1=̄2, (11)
YΩ = XΩ,

where Y is the observed spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers, X is
the imputed tensor, ^ (3) ∈ R=3×; is the mode-3 matricization of X , J ∈ R;×=̄1=̄2 is the learnable
transform, reshape re-arrays (^ (3)J) as the latent spatio-regular tensor of size =̄1 × =̄2 × =3, and
the constraint YΩ = XΩ enforces the entries of X in index Ω equal to the corresponding entries of
the observation Y .
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Similarly, the denoising model (SIR-TRPCA) can be formulated as

min
X ,S,J

‖reshape(^ (3)J)‖TNN + _‖S ‖1,

s.t. ‖J (:, 9)‖2� = 1, 9 = 1, 2, · · · , =̄1=̄2, (12)
Y = X + S .

where Y is the observed spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers, X is
the denoised tensor, ^ (3) ∈ R=3×; is the mode-3 matricization of X , J ∈ R;×=̄1=̄2 is the learnable
transform, reshape re-arrays (^ (3)J) as the latent spatio-regular tensor of size =̄1 × =̄2 × =3, S is
the sparse noise, and _ is the parameter to balance regularizers.

3.3 Solving Algorithms for the Proposed Models
Since the proposed models are strongly nonconvex, we elaborately design corresponding solving
algorithms based on the PAM framework [3]. We first introduce indicator functions as

XC (J) =
{
0 if J ∈ C = {J : ‖J (:, 9)‖2

�
= 1}, 9 = 1, 2, · · · , =̄1=̄2,

+∞ otherwise,

XB (X ) =
{
0 if X ∈ B = {X : YΩ = XΩ},
+∞ otherwise.

(13)

Then, to solve Equations (11) and (12), we introduce auxiliary variable L = reshape(^ (3)J) and
reformulate problems (11) and (12) as the following unconstrained optimizations, i.e.,

min
L,X ,J

‖L‖TNN + W

2
‖L − reshape(^ (3)J)‖2� + XC (J) + XΩ (X ), (14)

and

min
L,X ,S,J

‖L‖TNN + _‖S ‖1 +
W

2
‖L − reshape(^ (3)J)‖2� + `

2
‖Y − X − S ‖2� + XC (J), (15)

where ` and W are penalty parameters. When ` and W are large enough, problems (14) and (15) are
equivalent to the original problems (11) and (12).

Then, under the PAM framework, the original problem can be decoupled into simpler subproblems,
which are alternatively updated. Specifically, subproblems for updating each variable are as follows.

— Subproblem for updatingL: This subproblem is a typical tensor singular value thresholding
(TSVT) problem [26], i.e.,

LC+1 = argmin
L

‖L‖TNN + W

2
‖L − reshape(^C

(3)J
C )‖2� + d

2
‖L − LC ‖2� ,

= TSVT

(Wreshape(^C
(3)J

C ) + dLC

W + d
,

1
W + d

)
,

(16)

where d is the stepsizes parameter of the proximal term. Define X = U ∗ S ∗ V> be the TSVD of X ,
and then the corresponding TSVT operator is defined as TSVT(X , g) = U ∗ Sg ∗ V> (g > 0), where
Sg = (S̄ − g)+ ×3 L −1 and (S̄ − g)+ = max(S̄8 9: − g, 0) [26].

— Subproblem for updating J : This subproblem is a typical least-square problem with the
constraint ‖J (:, 9)‖2

�
= 1, i.e.,
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JC+1 = argmin
J

W

2
‖LC+1 − reshape(^C

(3)J)‖2� + d

2
‖J − JC ‖2� ,

= argmin
J

W

2
‖RC+1(3) − ^C

(3)J ‖2� + d

2
‖J − JC ‖2� ,

= VC ((W^>C
(3)^

C
(3) + dO )−1 (W^>C

(3)R
C+1
(3) + dJC )),

(17)

where VC is a operator satisfying VC (M) = M (:, 9)/‖M (:, 9)‖� .
The subproblems for updating L and J are same for solving SIR-LRTC and SIR-TRPCA. Next,

the subproblems for updating X and S are as follows.
— Subproblem for updating X in SIR-LRTC: This subproblem is a typical least-square problem

with the constraint XΩ = YΩ , i.e.,

X C+1 = argmin
X

W

2
‖LC+1 − reshape(^ (3)J

C+1)‖2� + d

2
‖X − X C ‖2� ,

= argmin
X

W

2
‖RC+1(3) − ^ (3)J

C+1‖2� + d

2
‖^ (3) − ^C

(3) ‖
2
� ,

= VΩ

(
ir-fold3

(WRC+1(3)J
>C+1 + d^C

(3)

WJC+1J>C+1 + dO

))
,

(18)

where ir-fold3 is an operator to re-array the stacked mode-3 fibers to the original spatio-irregular
tensor X and VΩ the projection onto {X : XΩ = YΩ}.

— Subproblem for updatingX in SIR-TRPCA:TheX subproblem is a typical least-square problem,
i.e.,

X C+1 = argmin
X

W

2
‖LC+1 − reshape(^ (3)J

C+1)‖2� + `

2
‖X + SC − Y ‖2� + d

2
‖X − X C ‖2� ,

= argmin
X

W

2
‖R>C+1(3) − ^ (3) )J

C+1‖2� + `

2
‖^ (3) + YC(3) − _ (3) ‖2� + d

2
‖^ (3) − ^C

(3) ‖
2
� ,

= ir-fold3

(WRC+1(3)J
>C+1 + ` (_ (3) − YC(3) ) + d^C

(3)

WJC+1J>C+1 + (` + d)O

)
,

(19)

where ir-fold3 is to re-array the stacked mode-3 fibers as the original spatio-irregular tensor.
—Subproblem for updating S in SIR-TRPCA: The S subproblem is a typical soft thresholding

problem [26], i.e.,

SC+1 = argmin
S

_‖S ‖1 +
`

2
‖X C+1 + S − Y ‖2� + d

2
‖S − SC ‖2� ,

= SOFT

(
` (Y − X C+1) + dS

` + d
,

_

` + d

)
.

(20)

For a tensor S , the corresponding soft thresholding operator can be defined as SOFT(S, g) (g > 0)
and (SOFT(S, g))8 9: = sign(S8 9: )max( |S8 9: | −g, 0), where the sign function satisfies sign(S8 9: ) = 1
when S8 9: > 0, sign(S8 9: ) = 0 when S8 9: = 0, and sign(S8 9: ) = −1 when S8 9: < 0.

With the solution of each subproblem, we summarize the PAM-based algorithms for SIR-LRTC
and SIR-TRPCA in Algorithms 1 and 2, respectively.

— T ime complexity analysis: Here, we analyze the time complexities of the proposed method.
The time complexity of the proposed method mainly comes from three aspects: (1) computing
TSVD for updating L; (2) updating transform J ; (3) matrix product and inverse for updating X . By
assuming L ∈ R=̄1×=̄2×=3 , X is a spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers,
and J ∈ R;×=̄1=̄2 , we give the time complexity of the proposed method in Table 2.

— Convergence guarantee: Here, we establish the theoretical convergence for Algorithms 1
and 2. Since the key problem of establishing the convergence guarantee for both algorithms is
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Algorithm 1: PAM for SIR-LRTC
Input The observed Y , Ω, W , d , =̄1, =̄2, n , and C<0G .
Output X .
Initialize X 0, J0, L0, and C = 0 (see experimental setting for details).
While not converged and C ≤ C<0G do
Update LC+1 via Equation (16).
Update JC+1 via Equation (17).
Update X C+1 via Equation (18).
Check the convergence condition:
‖X C+1 − X C ‖2

�
/‖X C ‖2

�
≤ n or C > C<0G .

Let C = C + 1 and W = 1.2W .
End while

Algorithm 2: PAM for SIR-TRPCA
Input The observed Y , W , `, _, d , =̄1, =̄2, and n .
Output X .
Initialize X 0, S0, J0, L0, and C = 0 (see experimental setting for details).
While not converged and C ≤ C<0G do
Update LC+1 via Equation (16).
Update JC+1

(3) via Equation (17).
Update X C+1 via Equation (19).
Update SC+1 via Equation (20).
Check the convergence condition:
‖X C+1 − X C ‖2

�
/‖X C ‖2

�
≤ n or C > C<0G .

Let C = C + 1, W = 1.2W , and ` = 1.2`
End while

Table 2. Time Complexities of the Proposed Method

Subproblem Time complexity

Update L ∈ R=̄1×=̄2×=3 O(=̄1=̄2=3 log=3 +min(=̄1, =̄2)=̄1=̄2=3)

Update J ∈ R;×=̄1=̄2 O(;=̄1=̄2=3 + ;2=3 + ;3)

Update X (^ (3) ∈ R=3×; ) O(;=̄1=̄2=3 + ;2=̄1=̄2 + ;3)

Total O(=̄1=̄2=3 log=3 +min(=̄1, =̄2)=̄1=̄2=3 + ;=̄1=̄2=3 + ;2 (=̄1=̄2 + =3) + ;3)

similar, we mainly establish the convergence guarantee for Algorithm 2 in detail. For SIR-TRPCA,
define Q =

W

2 ‖L − reshape(^ (3)J)‖2
�
+ `

2 ‖X + S − Y ‖2
�
, 51 = ‖L‖TNN, 52 = CX , 53 = _‖S ‖1, and

54 = XC (J), where CX is a constant. Then, the unconstrained SIR-TRPCA model (15) can be denoted
by 5 (L,X ,S,J) = ∑4

8=1 58 +Q.

Theorem 3.5. The sequence {LC ,X C ,SC ,JC } generated by Algorithm 2 converges to a critical point
of 5 (L,X ,S,J).
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According to Attouch, Bolte, and Svaiter’s paper [3], the proof of Theorem 3.5 is just verifying
the following conditions hold in our setting, i.e.,

(1) 5 is a proper lower semi-continuous function;
(2) 5 satisfies the Kurdyka-Łojasiewicz (K-Ł) property;
(3) The sequence {LC ,X C ,SC ,JC } satisfies the sufficient decrease condition and relative error

(RelErr) condition.
Before verifying these conditions, we introduce some important preliminaries as follows.

Definition 3.6 (K-Ł property [3]). A proper lower semi-continuous function 5 : R= → R ∪ +∞
is said to have the K-Ł property at Ḡ ∈ 3><(m5 ) if there exist [ ∈ (0, +∞], a neighborhood [ of
Ḡ , and a continuous concave function q : [0, [) → [0, +∞) such that: (1) q (0) = 0; (2) q is C1 on
(0, [); (3) q ′ is positive on (0, [); (4) for each G ∈ [ ∩ [5 (Ḡ) < 5 (G) < 5 (Ḡ) + [], the K-Ł inequality
hold: q ′ (5 (G) − 5 (Ḡ))38BC (0, m5 (G)) ≥ 1.

Lemma 3.7 (Sufficient Decrease [3]). For functions 58 (G8 ) and function Q(G1, G2, . . . , G=), there
exist d > 0, such that

58 (GC+18 )+Q(GC+11 , . . . , GC+18 , GC8+1, . . . , G
C
=)+

d

2
‖GC+18 − GC8 ‖2� ≤ 58 (GC8 )+Q(GC+11 , . . . , GC8 , G

C
8+1, . . . , G

C
=).
(21)

Lemma 3.8 (RelErr [3]). For functions 58 (G8 ) and function Q(G1, G2, . . . , G=), there exist EC+18 ∈
m58 (GC+18 ) and d > 0, such that

‖EC+18 + ∇G8Q(GC+11 , . . . , GC+18 , GC8+1, . . . , G
C
=)‖� ≤ d ‖GC+18 − GC8 ‖� . (22)

Proof. Here, we begin to prove Theorem 3.5 by checking the three conditions inside of the
theorem environment. Firstly, we prove that 5 is a proper lower semi-continuous function. It can
verify that the summation of the Frobenius norm is a C1 function with a locally Lipschitz continuous
gradient. The ;1 norm is proper and lower semi-continuous. Since ‖L‖TNN is the summation of
the nuclear norm of frontal slices from L, TNN is proper and lower semi-continuous. Thus, 5 is a
proper lower semi-continuous function.

Secondly, we prove that 5 satisfies the K-Ł property at each {LC ,X C ,SC ,JC } by showing that
5 is a semi-algebraic function. The subset {J : ‖J (:, 9)‖2 = 1} is semi-algebraic. The ;1 norm,
Frobenius norm, and TNN are semi-algebraic functions [19]. Thus, 5 is a semi-algebraic function.
Since a semi-algebraic real-valued function is a K-Ł function, 5 has the K-Ł property at each
{LC ,X C ,SC ,JC } [5].

Thirdly, we prove that {LC ,X C ,SC ,JC } satisfies the sufficient decrease condition and RelErr
condition. For convenience, we denote variables {L,X ,S,J} as {G1, G2, G3, G4} and define 51 =

‖L‖TNN, 52 = CX , 53 = _‖S ‖1, 54 = XC (J), and Q =
W

2 ‖L − reshape(^ (3)J)‖2
�
+ `

2 ‖X + S − Y ‖2
�
,

where CX is a constant.
The proof of Lemma 3.7: Since each subproblem of 5 has the closed-form solution, let L:+1,X :+1,

S:+1, M:+1, and J:+1 are the optimal solutions of each subproblem of 5 , and then the sequence
satisfies the sufficient decrease condition [3, 5].
The proof of Lemma 3.8: Before the proof of Lemma 3.8, we first prove the boundedness of LC

and SC . According to the sufficient decrease lemma, we conclude that

‖LC ‖TNN ≤ 5 (LC ,X C−1,SC−1,JC−1) ≤ · · · ≤ 5 (L0,X 0,S0,J0), (23)

and

‖SC ‖1 ≤ 5 (LC ,X C ,SC ,JC−1) ≤ · · · ≤ 5 (L0,X 0,S0,J0). (24)
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Since 5 (L0,X 0,S0,J0) is a constant, ‖SC ‖1 and ‖LC ‖TNN are bounded. By the Cauchy–Schwarz
inequality, we have

‖LC ‖� =
∑

‖L̄C (:, :, :)‖� ≤
∑

‖L̄C (:, :, :)‖∗, (25)

and

‖SC ‖2� =
∑

(BC
8 9:

)2 ≤
(∑

|BC
8 9:

|
)2

= ‖SC ‖21. (26)

Thus, LC and SC are bounded. Since ‖JC (:, 9)‖� = 1, JC is bounded. Then, since LC , SC , and JC are
bounded, X C is bounded.

Now, we begin to prove Lemma 3.8. Let LC+1,X C+1,SC+1, and JC+1 are optimal solutions of
subproblems of 5 and there exists subgradient for 51 = ‖L‖TNN and 53 = _‖S ‖1. We have that

0 ∈m‖L‖TNN + ∇LQ(LC+1,X C ,SC ,JC ) + d (LC+1 − LC ), (27)

and

0 ∈m‖S ‖1 + ∇SQ(LC+1,X C+1,SC+1,JC ) + d (SC+1 − SC ). (28)

Let

EC+11 = −∇LQ − d (LC+1 − LC ) ∈ m‖L‖TNN, (29)

and

EC+13 = −∇SQ − d (SC+1 − SC ) ∈ m‖S ‖1 . (30)

Since ∇Q Lipschitz continuous on any bounded set, there exist d > 0, such that

‖EC+18 + ∇G8L(GC+11 , . . . , GC+18 , GC8+1, . . . , G
C
4)‖� ≤ d ‖GC+18 − GC8 ‖� , (31)

The proof of the RelErr condition is completed.
Satisfying the three key conditions in [5] and [3], we can conclude that the bounded sequence

{LC ,X C ,X C ,JC } converges to a critical point of 5 . The proof for Algorithm 1 is similar to the proof
process of Algorithm 2. �

4 Experiments
Here, we evaluate the performance of the proposed SIR-LRTC and SIR-TRPCA by setting synthetic
and real-world spatio-irregular tensor imputation and denoising experiments. Our target is to
recover the high-qualityX from the observed corrupted dataY . Twometrics served as the numerical
performance evaluation, including the RelErr and peak signal-to-noise ratio (PSNR), which are
formulated as

RelErr =
‖X − X ∗

C ‖�
‖X ∗‖�

,

and

PSNR = 10 log10
;=3 max(X ∗

C )2

‖X − X ∗‖2
�

,

where X ∗ is the original spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers.
Competing Methods: Since there are no fundamental tensor decompositions designed for spatio-

irregular tensors, we consider the classical tensor-based method TNN and low-rank matrix factor-
ization with preprocessing as competing methods.

For the TNN-based method, we first convert the spatio-irregular tensor to a regular tensor by
using zero-padding, interpolation, and element-wise 0-1 weighting, and then apply the classical
tensor-based method TNN (termed as TNN-Z, TNN-I, and TNN-W, respectively). Specifically, in
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the TNN-I method, we transform the spatio-irregular tensor into a regular tensor by estimating the
entries of the complement of the incomplete 2D grid with the MATLAB built-in function “griddata,”1
which is also used as the preprocessing in the community (e.g., [41]). In the TNN-W method, we
can transform the spatio-irrgular tensor into a regular tensorW �X by using the element-wise 0-1
weighting, whereW8 9: = 1 indicates the corresponding X8 9: belongs to the original spatio-irregular
tensor, W8 9: = 0 indicates the corresponding X8 9: doesn’t belong to the original spatio-irregular
tensor, and � is the Hadamard product. Then, the resulting regular tensor W � X can be tackled
by classical TNN minimization-based imputation and denoising models and alternating direction
method of multipliers can be considered to solve the corresponding convex optimization problems
[26, 48].

For low-rank matrix factorization-based method, we first transform the spatio-irregular tensor
into a matrix by the mode-3 matricization of the spatio-irregular tensor, and then use the non-
negative low-rank matrix factorization (NLRMF) method [22]. To impute the missing values
of the spatio-irregular tensor in the NLRMF method, we introduce the constraint YΩ = XΩ to
the NLRMF method, where Y is the observed spatio-irregular tensor, X is the underlying spatio-
irregular tensor from Y , and the constraint YΩ = XΩ enforces the entries of X in index Ω equal
to the corresponding entries of the observation Y . To remove sparse noise of the spatio-irregular
tensor in the NLRMF method, we introduce the constraint Y = X +S to the NLRMF method, where
Y is the observed spatio-irregular tensor, X is the denoised spatio-irregular tensor from Y , and S
is the sparse noise. The source codes of TNN and NLRMF were downloaded from the links.2,3
Parameters Setting: All methods are tuned for the highest PSNR value by using the grid search

method. In the imputation experiment, for SIR-LRTC, =̄1 and =̄2 are selected from {10, 15, ..., 50}, d is
fixed as 0.001, andW = (1−gd)/g , where g is selected from {0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9}.
For TNN-Z, TNN-I, and TNN-W in the imputation experiment, ` is selected from {0.01, 0.05, 0.1, 0.5,
1, 5, 10, 50, 100}. For NLRMF in the imputation experiment, A is selected from {1, 2, . . . , dmin(=3, ;)/2e}
for the spatio-irregular tensor with =3 frontal slices and ; mode-3 fibers. In the denoising experiment,
for SIR-TRPCA, =̄1 and =̄2 are selected from {10, 15, ..., 50}, ` is selected from {0.01, 0.1, 1, 10, 100}, _
is selected from {0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7}, d is fixed as 0.001, and W = (1−gd)/g , where
g is selected from {0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9}. For TNN-Z, TNN-I, and TNN-W in the
denoising experiment, ` is selected from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} and _ is selected from
{0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7}. For NLRMF in the denoising experiment, A is selected from
{1, 2, . . . , dmin(=3, ;)/2e} for the spatio-irregular tensor with=3 frontal slices and ; mode-3 fibers, ` is
selected from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, and _ is selected from{0.01, 0.03, 0.05, 0.07, 0.1, 0.3,
0.5, 0.7}.

Initialization: Since the proposed method is strongly nonconvex, the initialization is important to
its performance. X 0 is initialized by the proposed method with the fixed transform J . Specifically,
we fix J as the DCT-based matrix and let X 0 be equal to the observation Y , and then we implement
our method without updating J to obtain an initial result X̃ . Subsequently, we use the DCT-based
matrix as the initialized J0 and X̃ as the initialized X 0 and then implement Algorithms 1 and 2,
where L0 = reshape(J0

(3)^
0) and the initialized S0 in Algorithm 2 is a tensor with all values be

zero.
Implementation Details: The programming language is Matlab for all methods. All methods are

implemented in Matlab R2019a on a desktop computer, which equips an Intel Core i9-10900KF
3.70-GHz CPU (All 10 computational cores were allowed to be used) and 256 GB RAM.

1https://www.mathworks.com/help/matlab/ref/griddata.html
2TNN: https://github.com/canyilu/Tensor-tensor-product-toolbox
3NLRMF: https://github.com/hiroyuki-kasai/NMFLibrary
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Table 3. The Basic Information of Superpixels from the Color Image Butterfly and MSI
Pompoms

Data Superpixel
Size Number of mode-3 fibers

=1 =2 =3 ;

Butterfly
37 39 3 735

35 45 3 495

Pompoms
39 34 31 808

49 46 31 1196

Note: The =1 and =2 represent the height and width of the smallest rectangle containing the spatial
domain of the spatio-irregular tensor, and =3 is the number of the fontal slices of the spatio-irregular
tensor.

Synthetic Examples: In this experiment, we consider the superpixel from the color image Butterfly
and multispectral image (MSI) Pompoms as synthetic spatio-irregular tensors. The color image
“Butterfly” is part of the public Leeds butterfly dataset,4 and the MSI “Pompoms” is part of the public
CAVE MSI dataset.5 For visualization of superpixels from the MSI Pompoms, we use band 30 as the
red channel, band 10 as the green channel, and band 20 as the blue channel to obtain a pseudo-RGB
image. Table 3 lists the basic information about these spatio-irregular tensors, including their
size and the number of mode-3 fibers. We compare the performance of the proposed method and
competing methods on imputation and denoising tasks. In the imputation task, we uniformly
sample elements from the matrix formed by the mode-3 fibers of the spatio-irrgular tensor to
generate the observed data by using the MATLAB built-in function “randsample,” and the sampling
rate is set as 0.2 for the color image and is set as 0.1 for MSI. In the denoising task, salt and pepper
noise with the ratio = 0.3 is added to the matrix formed by the mode-3 fibers of the spatio-irrgular
tensor to generate the observed data.

Tables 4 and 5 give numerical results by differentmethods for superpixel imputation and denoising
tasks. The proposed SIR-LRTC and SIR-TRPCA significantly outperform other competing methods
in terms of the RelErr and PSNR values for the selected superpixels on different tasks. Since there
are only three bands for the color image, stacking mode-3 fibers as a matrix is near failure in the
imputation task. For MSI superpixels, NLRMF performs well because the third mode of MSI has
abundant information. The proposed method is superior to other methods on both MSI and color
image because the proposed method fully exploits the spatial and spectral correlation.

Figures 6 and 7 show the visual results by different methods. In Figure 6, we can see that TNN-Z
and TNN-W lead to significant artifacts because preprocessing methods inevitably introduce bias
information.The proposedmethod removes almost all of the salt and pepper noise while maintaining
the details of the superpixels as compared with other methods. The underlying mechanism is that
the proposed method uses the learnable spatial transform to project the original spatio-irregular

4Available at https://www.josiahwang.com/dataset/leedsbutterfly
5Available at http://www.cs.columbia.edu/CAVE/databases/multispectral
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Table 4. The Numerical Results by Different Methods for Superpixel Imputation and
Denoising Tasks

Imputation (Sampling rate = 0.2)
Superpixel Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-LRTC

RelErr 0.8998 0.7790 0.6346 0.5687 0.6324 0.4559
PSNR 15.06 16.35 18.15 19.08 18.17 21.00
RelErr 0.8963 0.7706 0.4496 0.4980 0.6604 0.2415
PSNR 10.84 12.16 16.88 15.95 13.54 22.24

Denoising (Salt and pepper noise ratio = 0.3)
Superpixel Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-TRPCA

RelErr 1.0420 0.4410 0.4228 0.3530 0.4283 0.2876
PSNR 13.82 21.29 21.66 23.22 21.54 25.00
RelErr 0.5636 0.3656 0.4114 0.1919 0.4197 0.1670
PSNR 14.88 18.64 17.61 24.23 17.44 25.44

Here, the superpixels are from the color image Butterfly. Bold indicates the best numerical results.

Table 5. The Numerical Results by Different Methods for Superpixel Imputation and
Denoising Tasks

Imputation (Sampling rate = 0.1)
Superpixel Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-LRTC

RelErr 0.9491 0.2111 0.0985 0.0985 0.1322 0.0932
PSNR 11.25 24.31 30.92 30.93 28.37 31.40
RelErr 0.9498 0.4423 0.3147 0.2496 0.2991 0.2284
PSNR 16.73 23.37 26.32 28.34 26.77 29.11

Denoising (Salt and pepper noise ratio = 0.3)
Superpixel Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-TRPCA

RelErr 1.0319 0.0485 0.0740 0.0566 0.0686 0.0369
PSNR 10.52 37.07 33.41 35.74 34.06 39.45
RelErr 3.3540 0.2319 0.1941 0.2602 0.1966 0.0453
PSNR 5.7706 28.98 30.52 27.98 30.41 37.66

Here, the superpixels are from the MSI Pompoms. Bold indicates the best numerical results.

tensor into a latent regular tensor while preserving the essential low-rankness of the spatio-irregular
tensor without introducing extra bias information. In Figure 7, we can observe that NLRMF leads
to color distortion while the proposed SIR-LRTC successfully fills the missing area and preserves
color fidelity. In summary, our method is more suitable for diverse tasks of spatio-irregular tensors.
Real-World Examples: In this experiment, we test the performance of the proposed methods on

real-world spatio-irregular tensors. We mainly compare the performance of the proposed method
and competing methods on spatial transcriptomics data imputation and HSI denoising. Here, to
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(a) Original (b) Observed (c) NLRMF (d) TNN-Z (d) TNN-I (e) TNN-W (f) SIR-TRPCA

Fig. 6. The visual results by different methods for superpixel denoising. Here, the superpixels are from the
color image Butterfly and corrupted by salt and pepper noise with the ratio = 0.3.

(a) Original (b) Observed (c) NLRMF (d) TNN-Z (d) TNN-I (e) TNN-W (f) SIR-LRTC

Fig. 7. The visual results by different methods for superpixel imputation. Here, the superpixels are from
the MSI Pompoms and the sampling rate is 0.1. For visualization of superpixels from the MSI Pompoms, we
use band 30 as the red channel, band 10 as the green channel, and band 20 as the blue channel to obtain a
pseudo-RGB image.

comprehensively evaluate the performance of different methods, we not only compared their
recovery results but also further compared their influence on downstream applications.
Spatial Transcriptomics Data Imputation: Spatial transcriptomics technology enables high-

throughput collection of gene expression coupled with spatial information in biological tissues.
Such data is a typical kind of spatio-irregular multidimensional data. The gene expression of each
spot is measured, where the spots are spatially distributed on some tissue slice with irregular
boundary. An important characteristic of such data is its high proportion of zero entries, which
includes the true zero expression entries and missing values (“dropout”). Here, we applied the
proposed method to spatial transcriptomics data of the human heart tissue [2] (see its visualization
in 2D from Figure 8). Table 6 lists the basic information of this spatio-irregular tensor, including its
size and the number of mode-3 fibers. Since there is no true reference of the data, for performance
evaluation, we consider the non-zero values of the gene expression as the true reference, and
uniformly sample 30% elements from the non-zero values to generate the observation.

Table 7 gives numerical results by different methods for spatial transcriptomics data imputation.
The proposed SIR-LRTC significantly outperforms other competing methods in terms of the RelErr
and PSNR values. Specifically, SIR-LRTC decreases around 10% RelErr as compared with the second-
best method.

Figure 9 shows clustering results of spatial transcriptomics data imputed by different methods.
Specifically, we use classical K -means [30] to cluster the spatial transcriptomics data imputed
by different methods and then reduce the dimensionality of the imputed spatial transcriptomics
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(a) Spatial transcriptomics data (b) Superpixel segmentation map

Fig. 8. Spatio-irregular tensors from the real world. (a) The spatial transcriptomics data of the human heart
tissue visualized in 2D. (b) The superpixel segmentation map of the noisy HSI Pavia University.

Table 6. The Basic Information of the Spatial Transcriptomics Data

Data
Size Number of mode-3 fibers

=1 =2 =3 ;

Human heart tissue 22 16 250 210

Note: The =1 and =2 represent the height and width of the smallest rectangle containing the spatial
domain of the spatio-irregular tensor, and =3 is the number of the fontal slices of the spatio-irregular
tensor.

Table 7. The Numerical Results by Different Methods for Spatial Transcriptomics Data Imputation

Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-LRTC
RelErr 0.8370 0.5275 0.4969 0.5006 0.5518 0.4271
PSNR 31.04 35.05 35.57 35.50 34.66 36.89

Bold indicates the best numerical results.

data by t-SNE [29] for visualization in 2D. We also consider the mean silhouette score [34] to
quantitatively measure clustering results, where the higher value indicates the better clustering
result. As observed from Figure 9, the clustering result of spatial transcriptomics data imputed
by our method shows better grouping of similar classes and better separation of different classes
and achieves the best mean silhouette score numerically. In summary, our method can benefit
downstream clustering as compared with competing methods.
HSI Denoising: Superpixel segmentation has been developed to be a promising tool for feature

extraction of HSI [46]. Here, we divide an HSI as many superpixels for the HSI denoising task,
where each superpixel of the HSI is a spatio-irregular tensor. Pavia University6 is employed as the
test data, which is of size 610 × 340 × 103. For visualization of this HSI, we can use band 55 as the
red channel, band 41 as the green channel, and band 12 as the blue channel to obtain a pseudo-RGB
image. Salt and pepper noise with the ratio = 0.3 is added to all bands of the image. This data is
6Available at https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Fig. 9. Clustering results of spatial transcriptomics data imputed by different methods. Here, we use classical
K -means to cluster the spatial transcriptomics data imputed by different methods and then reduce the
dimensionality of the imputed spatial transcriptomics data by t-SNE for visualization in 2D. The mean
silhouette score is employed to numerically measure the similarity of objects in a class, where the higher
value indicates the better clustering.

Table 8. The Numerical Results by Different Methods for HSI Pavia University Denoising

Metrics Observed NLRMF TNN-Z TNN-I TNN-W SIR-TRPCA
RelErr 1.609 0.0799 0.1439 0.1099 0.1446 0.0560
PSNR 14.32 40.41 35.30 37.64 35.26 43.51

Bold indicates the best numerical results.

subdivided into 80 superpixels by using the entropy rate superpixel segmentation method [25]. We
give the superpixel segmentation map of the noisy Pavia University in Figure 8. For performance
evaluation, we first compose the denoised superpixels into a holistic image and then compute the
RelErr and PSNR on the holistic image.

Table 8 gives numerical results by different methods for HSI Pavia University denoising. The
proposed SIR-TRPCA significantly outperforms other competing methods in terms of the RelErr and
PSNR values. Figure 10 shows visual results by different methods, and each subfigure in this Figure
is a composite of corresponding denoised superpixels. We can observe that all compared methods
successfully remove almost all of the salt and pepper noise because considering the superpixel as
the basic unit of the HSI can fully exploit the local correlation of the HSI.

Furthermore, Figure 11 shows the classification map and accuracy of denoised HSI by different
methods. Specifically, we use the support vector machine (SVM) as the classifier [31]. We can
observe that the classification result of denoised HSI by the proposed SIR-TRPCA is mostly close to
the ground truth as compared with other methods. In summary, our method can benefit downstream
classification as compared with competing methods.
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(a) Original (b) Observed (c) NLRMF (d) TNN-Z (d) TNN-I (e) TNN-W (f) SIR-TRPCA

Fig. 10. The visual results by different methods for HSI Pavia University denoising. Here, this HSI is corrupted
by salt and pepper noise with the ratio = 0.3. Each subfigure in this Figure is a composite of corresponding
denoised superpixels. For visualization of this HSI, we use band 55 as the red channel, band 41 as the green
channel, and band 12 as the blue channel to obtain a pseudo-RGB image.

Accuracy: 100% Accuracy: 77.67% Accuracy: 91.59% Accuracy: 89.60% Accuracy: 90.91% Accuracy: 89.44% Accuracy: 92.37%

Ground Truth Noisy NLRMF TNN-Z TNN-I TNN-W SIR-TRPCA

Fig. 11. Classification map and accuracy of denoised HSI by different methods on Pavia University. Here, we
use the SVM as the classifier.

Fig. 12. The numerical results of the proposed method with varying =̄1 and =̄2 for superpixel denoising of
different data. Here, (a) is the result of the superpixel from the color image Butterly ; (b) is the result of the
superpixel from the MSI Pompoms.

Discussion for the Influence of the Spatial Size of the Latent Spatio-Regular Tensor: The key of
our method is using the learnable transform to project the original spatio-irregular tensor into
its latent spatio-regular tensor. The parameters =̄1 and =̄2 determine the spatial size of the latent
spatio-regular tensor. To analyze the influence of =̄1 and =̄2, we test the proposed method with
varying =̄1 and =̄2. Figure 12 shows the numerical results of the proposed method with varying =̄1
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and =̄2 for superpixel denoising of different data. We can find that the performance of our method
becomes robust when =̄1=̄2 is larger than a threshold. Here, the threshold is usually the total number
of mode-3 fibers of the spatio-irregular tensor. Moreover, we can see that =̄1 and =̄2 of the latent
regular tensor are usually smaller than =1 and =2 of the original spatio-irregular tensor.

5 Conclusion
In this article, we proposed a fundamental tensor decomposition LTA-TSVD for emerging spatio-
irregular tensors, which allows us to leverage the intrinsic structure behind the spatio-irregular
tensor. Based on LTA-TSVD, we developed SIR-LRTC and SIR-TRPCA models for spatio-irregular
tensor imputation and denoising and designed corresponding solving algorithms for resulting
models with theoretical convergence. Extensive synthetic and real experiments show the proposed
method outperforms other competing approaches in imputation and denoising tasks and benefits
downstream applications.
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